Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pract Neurol ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485225

RESUMO

A 57-year-old man developed worsening early morning headaches, muscle cramps and falls over 12 months. He had widespread fasciculation and was diagnosed with motor neurone disease, and treated with nocturnal hypoventilation. Based on this diagnosis, he made significant personal and financial decisions including retiring and selling his house. He subsequently developed a lump in his right breast and was found to have gynaecomastia. This triggered genetic testing for Kennedy's disease leading to the correct diagnosis. This case highlights an unusual presentation of a rare disease leading to misdiagnosis and major repercussions for the patient. Recent genetic analysis from the 100 000 genome project suggests Kennedy's disease may be four times more prevalent in the population than previously thought, highlighting the need to consider genetic testing, especially if there is a suggestion of multisystem disease.

2.
Handb Clin Neurol ; 195: 521-532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37562884

RESUMO

Muscle channelopathies encompass a wide range of mainly episodic conditions that are characterized by muscle stiffness and weakness. The myotonic conditions, characterized predominantly by stiffness, include myotonia congenita, paramyotonia congenita, and sodium channel myotonia. The periodic paralysis conditions include hypokalemic periodic paralysis, hyperkalemic periodic paralysis, and Andersen-Tawil syndrome. Clinical history is key, and diagnosis is confirmed by next-generation genetic sequencing of a panel of known genes but can also be supplemented by neurophysiology studies and MRI. As genetic testing expands, so have the spectrum of phenotypes seen including pediatric presentations and congenital myopathies. Management of these conditions requires a multidisciplinary approach with extra support needed when patients require anesthetics or when pregnant. Patients with Andersen-Tawil syndrome will also need cardiac input. Diagnosis is important as symptomatic treatment is available for all of these conditions but need to be tailored to the gene and variant of the patient.


Assuntos
Síndrome de Andersen , Canalopatias , Transtornos Miotônicos , Paralisia Periódica Hiperpotassêmica , Humanos , Síndrome de Andersen/genética , Canalopatias/genética , Paralisia Periódica Hiperpotassêmica/genética , Transtornos Miotônicos/diagnóstico , Transtornos Miotônicos/genética , Músculo Esquelético , Paralisia , Mutação
3.
Muscle Nerve ; 68(4): 439-450, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515374

RESUMO

INTRODUCTION/AIMS: The periodic paralyses are muscle channelopathies: hypokalemic periodic paralysis (CACNA1S and SCN4A variants), hyperkalemic periodic paralysis (SCN4A variants), and Andersen-Tawil syndrome (KCNJ2). Both episodic weakness and disabling fixed weakness can occur. Little literature exists on magnetic resonance imaging (MRI) in muscle channelopathies. We undertake muscle MRI across all subsets of periodic paralysis and correlate with clinical features. METHODS: A total of 45 participants and eight healthy controls were enrolled and underwent T1-weighted and short-tau-inversion-recovery (STIR) MRI imaging of leg muscles. Muscles were scored using the modified Mercuri Scale. RESULTS: A total of 17 patients had CACNA1S variants, 16 SCN4A, and 12 KCNJ2. Thirty-one (69%) had weakness, and 9 (20%) required a gait-aid/wheelchair. A total of 78% of patients had intramuscular fat accumulation on MRI. Patients with SCN4A variants were most severely affected. In SCN4A, the anterior thigh and posterior calf were more affected, in contrast to the posterior thigh and posterior calf in KCNJ2. We identified a pattern of peri-tendinous STIR hyperintensity in nine patients. There were moderate correlations between Mercuri, STIR scores, and age. Intramuscular fat accumulation was seen in seven patients with no fixed weakness. DISCUSSION: We demonstrate a significant burden of disease in patients with periodic paralyses. MRI intramuscular fat accumulation may be helpful in detecting early muscle involvement, particularly in those without fixed weakness. Longitudinal studies are needed to assess the role of muscle MRI in quantifying disease progression over time and as a potential biomarker in clinical trials.


Assuntos
Canalopatias , Paralisia Periódica Hipopotassêmica , Distrofias Musculares , Paralisias Periódicas Familiares , Humanos , Paralisias Periódicas Familiares/diagnóstico por imagem , Paralisia Periódica Hipopotassêmica/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Distrofias Musculares/patologia , Imageamento por Ressonância Magnética , Paralisia , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Mutação
4.
Neuromuscul Disord ; 33(3): 270-273, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796140

RESUMO

We provide an up-to-date and accurate minimum point prevalence of genetically defined skeletal muscle channelopathies which is important for understanding the population impact, planning for treatment needs and future clinical trials. Skeletal muscle channelopathies include myotonia congenita (MC), sodium channel myotonia (SCM), paramyotonia congenita (PMC), hyperkalemic periodic paralysis (hyperPP), hypokalemic periodic paralysis (hypoPP) and Andersen- Tawil Syndrome (ATS). Patients referred to the UK national referral centre for skeletal muscle channelopathies and living in UK were included to calculate the minimum point prevalence using the latest data from the Office for National Statistics population estimate. We calculated a minimum point prevalence of all skeletal muscle channelopathies of 1.99/100 000 (95% CI 1.981-1.999). The minimum point prevalence of MC due to CLCN1 variants is 1.13/100 000 (95% CI 1.123-1.137), SCN4A variants which encode for PMC and SCM is 0.35/100 000 (95% CI 0.346 - 0.354) and for periodic paralysis (HyperPP and HypoPP) 0.41/100 000 (95% CI 0.406-0.414). The minimum point prevalence for ATS is 0.1/100 000 (95% CI 0.098-0.102). There has been an overall increase in point prevalence in skeletal muscle channelopathies compared to previous reports, with the biggest increase found to be in MC. This can be attributed to next generation sequencing and advances in clinical, electrophysiological and genetic characterisation of skeletal muscle channelopathies.


Assuntos
Síndrome de Andersen , Canalopatias , Paralisia Periódica Hipopotassêmica , Transtornos Miotônicos , Paralisia Periódica Hiperpotassêmica , Humanos , Paralisia Periódica Hiperpotassêmica/genética , Paralisia Periódica Hipopotassêmica/genética , Prevalência , Canalopatias/genética , Sequenciamento de Nucleotídeos em Larga Escala , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Mutação , Músculo Esquelético , Transtornos Miotônicos/genética , Síndrome de Andersen/genética
5.
Brain ; 146(4): 1316-1321, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36382348

RESUMO

Accurate determination of the pathogenicity of missense genetic variants of uncertain significance is a huge challenge for implementing genetic data in clinical practice. In silico predictive tools are used to score variants' pathogenicity. However, their value in clinical settings is often unclear, as they have not usually been validated against robust functional assays. We compared nine widely used in silico predictive tools, including more recently developed tools (EVE and REVEL) with detailed cell-based electrophysiology, for 126 CLCN1 variants discovered in patients with the skeletal muscle channelopathy myotonia congenita. We found poor accuracy for most tools. The highest accuracy was obtained with MutationTaster (84.58%) and REVEL (82.54%). Both of these scores showed poor specificity, although specificity was better using EVE. Combining methods based on concordance improved performance overall but still lacked specificity. Our calculated statistics for the predictive tools were different to reported values for other genes in the literature, suggesting that the utility of the tools varies between genes. Overall, current predictive tools for this chloride channel are not reliable for clinical use, and tools with better specificity are urgently required. Improving the accuracy of predictive tools is a wider issue and a huge challenge for effective clinical implementation of genetic data.


Assuntos
Canalopatias , Miotonia Congênita , Humanos , Canalopatias/genética , Músculo Esquelético , Canais de Cloreto/genética , Miotonia Congênita/genética , Mutação
6.
Muscle Nerve ; 66(5): 617-620, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053900

RESUMO

INTRODUCTION/AIMS: Although we have gained insight into coronavirus disease-2019 (COVID-19) caused by severe acute respiratory syndrome-coronavirus 2 since the beginning of the pandemic, our understanding of the consequences for patients with neuromuscular disorders is evolving. In this study we aimed to study the impact of COVID-19 and COVID-19 vaccination on skeletal muscle channelopathies. METHODS: We conducted a survey of patients with genetically confirmed skeletal muscle channelopathies seen at the UK Nationally Commissioned Channelopathy Service. RESULTS: Thirty-eight patient responses were received. Six patients had COVID-19 infection leading to exacerbation of their underlying muscle channelopathy. No major complications were reported. Thirty-six patients had received one or two COVID-19 vaccinations and the majority (68%) had no worsening of their underlying channelopathy. Thirty-two percent reported worsening of their usual symptoms of their muscle channelopathy, but all reported recovery to baseline levels. No serious adverse events were reported. DISCUSSION: The overall rates of COVID-19 infection were low in our study and COVID-19 vaccine uptake rates were high. Our results have been useful to inform patients that a subset of patients have reversible worsening of their channelopathy post-COVID-19 vaccination. Our study provides information for giving advice to patients with skeletal muscle channelopathies regarding COVID-19 infection and vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Canalopatias , Humanos , Canalopatias/epidemiologia , Canalopatias/complicações , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Músculo Esquelético , Vacinação/efeitos adversos
7.
Brain ; 145(2): 607-620, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34529042

RESUMO

High-throughput DNA sequencing is increasingly employed to diagnose single gene neurological and neuromuscular disorders. Large volumes of data present new challenges in data interpretation and its useful translation into clinical and genetic counselling for families. Even when a plausible gene is identified with confidence, interpretation of the clinical significance and inheritance pattern of variants can be challenging. We report our approach to evaluating variants in the skeletal muscle chloride channel ClC-1 identified in 223 probands with myotonia congenita as an example of these challenges. Sequencing of CLCN1, the gene that encodes CLC-1, is central to the diagnosis of myotonia congenita. However, interpreting the pathogenicity and inheritance pattern of novel variants is notoriously difficult as both dominant and recessive mutations are reported throughout the channel sequence, ClC-1 structure-function is poorly understood and significant intra- and interfamilial variability in phenotype is reported. Heterologous expression systems to study functional consequences of CIC-1 variants are widely reported to aid the assessment of pathogenicity and inheritance pattern. However, heterogeneity of reported analyses does not allow for the systematic correlation of available functional and genetic data. We report the systematic evaluation of 95 CIC-1 variants in 223 probands, the largest reported patient cohort, in which we apply standardized functional analyses and correlate this with clinical assessment and inheritance pattern. Such correlation is important to determine whether functional data improves the accuracy of variant interpretation and likely mode of inheritance. Our data provide an evidence-based approach that functional characterization of ClC-1 variants improves clinical interpretation of their pathogenicity and inheritance pattern, and serve as reference for 34 previously unreported and 28 previously uncharacterized CLCN1 variants. In addition, we identify novel pathogenic mechanisms and find that variants that alter voltage dependence of activation cluster in the first half of the transmembrane domains and variants that yield no currents cluster in the second half of the transmembrane domain. None of the variants in the intracellular domains were associated with dominant functional features or dominant inheritance pattern of myotonia congenita. Our data help provide an initial estimate of the anticipated inheritance pattern based on the location of a novel variant and shows that systematic functional characterization can significantly refine the assessment of risk of an associated inheritance pattern and consequently the clinical and genetic counselling.


Assuntos
Miotonia Congênita , Miotonia , Canais de Cloreto/genética , Humanos , Mutação/genética , Miotonia/genética , Miotonia Congênita/genética , Fenótipo
8.
Brain ; 144(2): 682-693, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33313649

RESUMO

Reports of Guillain-Barré syndrome (GBS) have emerged during the Coronavirus disease 2019 (COVID-19) pandemic. This epidemiological and cohort study sought to investigate any causative association between COVID-19 infection and GBS. The epidemiology of GBS cases reported to the UK National Immunoglobulin Database was studied from 2016 to 2019 and compared to cases reported during the COVID-19 pandemic. Data were stratified by hospital trust and region, with numbers of reported cases per month. UK population data for COVID-19 infection were collated from UK public health bodies. In parallel, but separately, members of the British Peripheral Nerve Society prospectively reported incident cases of GBS during the pandemic at their hospitals to a central register. The clinical features, investigation findings and outcomes of COVID-19 (definite or probable) and non-COVID-19 associated GBS cases in this cohort were compared. The incidence of GBS treated in UK hospitals from 2016 to 2019 was 1.65-1.88 per 100 000 individuals per year. GBS incidence fell between March and May 2020 compared to the same months of 2016-19. GBS and COVID-19 incidences during the pandemic also varied between regions and did not correlate with one another (r = 0.06, 95% confidence interval: -0.56 to 0.63, P = 0.86). In the independent cohort study, 47 GBS cases were reported (COVID-19 status: 13 definite, 12 probable, 22 non-COVID-19). There were no significant differences in the pattern of weakness, time to nadir, neurophysiology, CSF findings or outcome between these groups. Intubation was more frequent in the COVID-19 affected cohort (7/13, 54% versus 5/22, 23% in COVID-19-negative) attributed to COVID-19 pulmonary involvement. Although it is not possible to entirely rule out the possibility of a link, this study finds no epidemiological or phenotypic clues of SARS-CoV-2 being causative of GBS. GBS incidence has fallen during the pandemic, which may be the influence of lockdown measures reducing transmission of GBS inducing pathogens such as Campylobacter jejuni and respiratory viruses.


Assuntos
COVID-19/epidemiologia , Síndrome de Guillain-Barré/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , SARS-CoV-2 , Reino Unido/epidemiologia , Adulto Jovem
9.
Brain ; 143(10): 3104-3120, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32637987

RESUMO

Preliminary clinical data indicate that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with neurological and neuropsychiatric illness. Responding to this, a weekly virtual coronavirus disease 19 (COVID-19) neurology multi-disciplinary meeting was established at the National Hospital, Queen Square, in early March 2020 in order to discuss and begin to understand neurological presentations in patients with suspected COVID-19-related neurological disorders. Detailed clinical and paraclinical data were collected from cases where the diagnosis of COVID-19 was confirmed through RNA PCR, or where the diagnosis was probable/possible according to World Health Organization criteria. Of 43 patients, 29 were SARS-CoV-2 PCR positive and definite, eight probable and six possible. Five major categories emerged: (i) encephalopathies (n = 10) with delirium/psychosis and no distinct MRI or CSF abnormalities, and with 9/10 making a full or partial recovery with supportive care only; (ii) inflammatory CNS syndromes (n = 12) including encephalitis (n = 2, para- or post-infectious), acute disseminated encephalomyelitis (n = 9), with haemorrhage in five, necrosis in one, and myelitis in two, and isolated myelitis (n = 1). Of these, 10 were treated with corticosteroids, and three of these patients also received intravenous immunoglobulin; one made a full recovery, 10 of 12 made a partial recovery, and one patient died; (iii) ischaemic strokes (n = 8) associated with a pro-thrombotic state (four with pulmonary thromboembolism), one of whom died; (iv) peripheral neurological disorders (n = 8), seven with Guillain-Barré syndrome, one with brachial plexopathy, six of eight making a partial and ongoing recovery; and (v) five patients with miscellaneous central disorders who did not fit these categories. SARS-CoV-2 infection is associated with a wide spectrum of neurological syndromes affecting the whole neuraxis, including the cerebral vasculature and, in some cases, responding to immunotherapies. The high incidence of acute disseminated encephalomyelitis, particularly with haemorrhagic change, is striking. This complication was not related to the severity of the respiratory COVID-19 disease. Early recognition, investigation and management of COVID-19-related neurological disease is challenging. Further clinical, neuroradiological, biomarker and neuropathological studies are essential to determine the underlying pathobiological mechanisms that will guide treatment. Longitudinal follow-up studies will be necessary to ascertain the long-term neurological and neuropsychological consequences of this pandemic.


Assuntos
Infecções por Coronavirus , Doenças do Sistema Nervoso , Pandemias , Pneumonia Viral , Adolescente , Corticosteroides/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Uso de Medicamentos/estatística & dados numéricos , Feminino , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Londres/epidemiologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Doenças do Sistema Nervoso/diagnóstico por imagem , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/epidemiologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...